Securing the Skies: How Will the U.S. Military Fend Off Unmanned Systems?

This article first appeared in the Fall 2013 issue of Unmanned Tech Solutions.

By George Jagels

If they ever existed, the days of an American monopoly on military unmanned aerial systems (UAS) are surely over. While many countries building new systems are NATO members or longtime U.S. allies, some are not: China, Russia, and Iran produce UAS of varying degrees of sophistication. Much like in the recent past, the Pentagon must deal with both a foreign military challenge—at least 76 states now possess UAVs—and a more asymmetric threat. With  growing capabilities of small UAS comes greater access for non-state actors such as terrorist groups and drug cartels. This still-murky asymmetric threat—particularly as U.S. airpower remains unquestioned—presents an interesting challenge for the Pentagon.

Though the services were unable to comment on much of their counter-UAS doctrine and programs, they are developing them. Since 2010, an annual joint exercise called “Black Dart” has tested capabilities on this front. Late last year, the Army held a meeting at Fort Sill, OK, with allied and industry representatives to discuss countering enemy UAVs. The Navy will deploy a laser weapon system designed to destroy missiles and pilotless aircraft to the Persian Gulf next year.

In a 2010 exercise, the Air Force Research Lab used a high-energy laser (aboard the Mobile Active Targeting Resource for Integrated experiments) to negate a UAS. (Credit: Mr. Nick Tarasenko, AFRL/RDTA)

In a 2010 exercise, the Air Force Research Lab used a high-energy laser (aboard the Mobile Active Targeting Resource for Integrated experiments) to negate a UAS. (Credit: Mr. Nick Tarasenko, AFRL/RDTA)

In general, counter-UAS efforts can be divided into two approaches: kinetic and non-kinetic. The former consists of traditional air defenses; the latter, still inceptive, entails jamming and hacking control and data systems. North Korea is suspected to have jammed a South Korean remotely piloted helicopter that crashed last year. Iran says it hacked a CIA drone, causing it to crash-land in their territory in 2011. While these methods could prove useful to the U.S. and its allies, large UAVs like the Predator—which manned aircraft can easily shoot down—might not be the most immediate concern.

Against small UAS, other technologies might prove invaluable. Dr. Timothy Chung, Assistant Professor of Systems Engineering and Director of Research and Education for the Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) at the Naval Postgraduate School (NPS) in Monterey, CA, says that the threat from small UAS is related to the “lowering costs of acquisition and employment of UAVs, rapid proliferation, and variety of UAV technologies—either through military and industry avenues or through rapidly growing consumer and commercial arenas—difficulty in [developing] capabilities [to detect] relatively smaller and/or slower UAVs, and rules of engagement issues, including how to positively ID threat UAVs.”

Chung notes that, aside from kinetic approaches, one way to counter these are “tactical counter-measures, including advances in standoff detection/classification capabilities and layered defenses.” However, he stresses that the issue of locating, classifying, and intercepting targets is far from solved.

Our research shows that there are few dedicated counter-UAS systems available. SRC, Inc. of Syracuse, N.Y., has configured existing systems into the Vigilant Falcon, a “non-kinetic, turn-key solution to negate UAS threats,” particularly low-flying-, slow-flying-, and small-size (LSS) systems. Designed to counter small UAS, SRC’s system analyzes UAS signatures and kinematics for classification and identification. Tom Wilson, Product Accounts Vice President at SRC, tells us, “Vigilant Falcon integrates three mature systems (radar, electronic warfare, and optical), each tailored to support the detection, tracking, classification, identification, and negation of LSS UAS.”

Given the dissemination of troops in small-scale conflicts, for example, an effective counter-UAS system should be relatively easy to deploy. “Vigilant Falcon is … a low-cost, lightweight, and mobile system [that] can be emplaced on tripods or integrated into a single vehicle.” Other benefits he cites are low potential for collateral damage, low cost per kill, and countering raid-type attacks.

At NPS, Dr. Chung has worked on “defensive swarming” techniques, which include launching tens, if not hundreds, of UAVs at once to disrupt enemy systems. Though not the only solution to the counter-UAV issue, Chung says, “[The] advantages of a defensive swarm could include … potentially confusing the enemy by presenting many dynamic contacts, [and such a] swarm may be endowed with sufficient autonomy and perception abilities to target hostile threats on their own, for example, thereby alleviating operator workload and potential for error or delay.”

The swarming option presents some difficulties. Chung mentions three in particular:

  • logistics and manning (“To deploy/recover such swarm UAV systems,new methods for logistic support and manpower are required. Advances in automation may yield better ratios than currently employed for number of personnel per UAV.”);
  • command and control (“Traditional methods of interfacing with a single UAV are not scalable to larger swarms; new methods for interacting with multiple agents at the tactical command level … are necessary.”); and
  • networking (“Conventional architectures require all assets to communicate directly with base stations, but such hub-and-spoke architectures are both inefficient and intractable for large swarms; hence, new paradigms for C2 and for intra-swarm networking are also open challenges.”)

Chung contends that swarm capabilities will become both more “operationally relevant and technologically feasible in the coming years” as robotics and autonomy further develop. To make this happen, Chung envisions a “swarm vs. swarm” competition that provides innovators with a venue to test and share ideas. He hopes that the competition, slated for 2015, will drive advances in both swarm technologies and other important areas through “crowd-sourced innovation.”

As the counter-UAS issue is still in its infancy, expect the Pentagon to keep an eye on the unmanned skies for a long time to come.